RIGHTS

LaChouTi: Kernel Vulnerability Responding Framework for the
Fragmented Android Devices

Jingzheng Wu, Mutian Yang
General Department, Institute of Software, The Chinese Academy of Sciences, China
State Key Laboratory of Computer Sciences, Institute of Software, The Chinese Academy of Sciences, China
jingzheng08@iscas.ac.cn

ABSTRACT

The most criticized problem in the Android ecosystem is fragmen-
tation, i.e., 24,093 Android devices in the wild are made by 1,294
manufacturers and installed with extremely customized operating
systems [16]. The existence of so many different active versions
of Android makes security updates and vulnerability responses
across the whole range of Android devices difficult. In this paper,
we seek to respond to the unpatched kernel vulnerabilities for the
fragmented Android devices. Specifically, we propose and imple-
ment LaChouTi, which is an automated kernel security update
framework consisting of cloud service and end application update.
LaChouTi first tracks and identifies the exposed vulnerabilities ac-
cording to the CVE-Patch map for the target Android kernels. Then,
it generates differential binary patches for the identified results.
Finally, it pushes and applies the patches to the kernels. We evalu-
ate LaChouTi using 12 Nexus Android devices that have different
Android versions, different kernel versions, different series and
different manufacturers, and find 1922 unpatched kernel vulnera-
bilities in these devices. The results show that: (1) the security risk
of unpatched vulnerabilities caused by fragmentation is serious;
and (2) the proposed LaChouTi is effective in responding to such
security risk. Finally, we implement LaChouTi on new commercial
devices by collaborating with four internationally renowned manu-
facturers. The results demonstrate that LaChouTi is effective for
the manufacturers’ security updates.

CCS CONCEPTS

« Security and privacy — Mobile platform security;

KEYWORDS

Android Fragmentation, Vulnerability, Patching, Identification, Se-
curity

ACM Reference format:

Jingzheng Wu, Mutian Yang. 2017. LaChouTi: Kernel Vulnerability Respond-
ing Framework for the Fragmented Android Devices. In Proceedings of 2017
11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 6 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3117768

Ay

920

https://doi.org/10.1145/3106237.3117768

1 INTRODUCTION

Android dominates the global smartphone market with a share of
86.8% in 2016Q3 according to the report from the International Data
Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker [11].
Google also said that there are over 1.4 billion active users every
month on the Android platform worldwide. With more than 1.9
million applications or Apps, Android has touched almost every
aspect of our lives nowadays, and thus has changed the way we
think, study, communicate, travel and even entertain ourselves.

The most criticized problem in the Android ecosystem is fragmen-
tation. By customizing the official versions of the Android system,
1,294 manufacturers make 24,093 unique Android devices by the
year of 2015 [16]. In order to adapt to existing countless hardware
platforms, carriers, countries/regions, ecosystem services and user
requirements, the Linux kernel stack and the Android framework
are extremely customized and tailored [1]. Furthermore, Android it-
selfis also continuously evolving, making the active versions across
from Froyo 2.2 to Nougat 7.0 simultaneously.

Fragmentation is both a strength and a weakness of the Android
ecosystem [16]. The upside is that there are thousands of smart-
phone options on the market to choose from for the users while
the downside is that the existence of so many different versions
of Android makes security updates and vulnerability responses
across the whole range of Android devices difficult. Due to the
fragmentation, it leaves the vulnerabilities unpatched and the users
permanently vulnerable.

The unpatched vulnerabilities, especially the kernel level vul-
nerabilities, in the above situation expose Android devices to the
attackers for long attack windows [5, 12, 14, 23]. To defend against
this kind of vulnerable threats, researchers have proposed various
security policies and security enhancements [4, 6, 7, 13]. For in-
stance, Security Enhancement (SE) Android developed by NAS, is
available on Android version 4.2 and up, aiming to defend against
various root exploits and application vulnerabilities [19, 20]. Many
other systems, e.g., TrustDroid [7], XManDroid [6], FlaskDroid [8],
and AppPolicyModules [4] are developed, which aim to protect
Android devices.

As a vendor, Google releases security updates through OTA
(On The Air) updates monthly. However, on one hand, a month is
a sufficient time window that allows the attacks. More and more
attacks even happen on the same day that the vulnerability becomes
generally known, namely zero-day exploitation. For instance, CVE-
2016-0728 is described as a zero-day “it affects all Android phones
with versions KitKat and higher" by Israeli security firm Perception

https://doi.org/10.1145/3106237.3117768
https://doi.org/10.1145/3106237.3117768

RIGHTS

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Point. Because an exploit was released once the patch was well on
its way [24]. On the other hand, Google’s security OTA updates are
only for its own Nexus devices. Therefore, not all the manufacturers
are able to catch up with Google.

Although the prior work has been proposed to enhance the se-
curity, vulnerability exploitations such as root privilege escalation
are still possible and unavoidable. In this paper, we improve the
security update process by responding to the unpatched kernel
vulnerabilities for the fragmented Android devices. We propose
LaChouTi, an automated kernel security updates framework con-
sisting of cloud service and end application. LaChouTi first tracks
and identifies the exposed vulnerabilities for the target Android
kernels. Then, it generates differential binary patches for the iden-
tified results, and pushes and applies the patches to the kernels. We
evaluate LaChouTi leveraging 12 different Nexus devices with frag-
mented features, and find it is effective in reducing the unpatched
vulnerability security risks. Specifically, we make the following
contributions in this paper.

New Techniques. We develop a set of new techniques for auto-
matically responding to the exposed vulnerabilities in the target
kernels for the extremely fragmented Android devices. These tech-
niques can be utilized by any of the device manufacturers to identify
which vulnerabilities are related to their devices, and to release the
patch updates timely.

A New Framework. We propose LaChouTi, an automated ker-
nel security update framework that can patch all the vulnerabilities
once known. It tracks and patches the exposed vulnerabilities in
the fragmented Android devices and improves the security capacity
for Android manufacturers.

Implementation, Evaluation, and Application. We imple-
ment LaChouTi and evaluate it using different versions of Android
on Nexus and other devices. Furthermore, by collaborating with
four manufacturers, we work toward deploying LaChouTi in real
applications. With the help of LaChouTi, those four manufacturers
offer immediate security updates for some models of their devices.

2 BACKGROUND AND MOTIVATION

Android is open source [2] and is released publicly when a new
version of Android is developed. Google releases the Nexus phones
and tablets to act as their flagship Android devices, demonstrating
Android’s latest software and hardware features. Android manufac-
turers in Open Handset Alliance (OHA) follow up the new releases
and modify the OS to support and enrich their own devices [1].
All those customizations from the manufacturers, carriers, and end
sales make fragmentation. Therefore, the fragmentation makes se-
cure updates and vulnerability responses across the whole range of
Android devices difficult [18, 26].

Researchers found that on average 87.7% of Android devices are
exposed to at least one of 11 known critical vulnerabilities [21].
And they increase every day, leaving billions of Android devices
vulnerable [3, 9, 10, 21, 22, 25, 27]. Google does move relatively
quickly and the patches have been rolling out. However, it is a big
problem for the manufacturers to respond to all of their devices,
especially for those who have many devices and many versions of
Android.

Ay

921

Jingzheng Wu, Mutian Yang

New Android security vulnerabilities may be published at any
time. However, as a vendor, Google only releases security updates
through OTA updates monthly. To make things worse, Google stops
to provide patches for Android 4.3 or prior, even if those may affect
nearly a billion devices. For instance, as CVE-2014-8609, a typical
SYSTEM-level information disclosure vulnerability, Google has
decided not to provide patches for “legacy” Android WebView while
only notifying the manufacturers. In addition, Google is committing
new update policies, including keeping the now-monthly security
updates and guaranteeing the major OS updates for two years from
release.

The matter is more complicated for the device manufacturers.
Because of the fast device update, the manufacturers are difficult
to provide security updates to all devices they sold with limited
manpower. Meanwhile, long upgrade cycles imply that plenty of
users are going to be stuck on broken devices with known exploits.
Thus, it is believed that a better update framework is needed.

To respond the unpatched kernel vulnerabilities, we have the
following challenges.

How to identify the vulnerabilities for each of the deeply
fragmented Android kernels? Each of the manufacturers main-
tains and customizes its own versions of kernel for their devices.
Once a kernel vulnerability is published, manufacturers need to
know whether it affects their devices immediately. Therefore, a
solution should be able to automatically and accurately identify the
vulnerabilities in the large source code repositories.

How to generate the vulnerability patches for each ver-
sion of the fragmented Android? It is a key step to pull and
apply a corresponding patch to the specific kernel source code
repository for each identified vulnerability. The solution should
support to generate differential binary patches between the original
and patched kernels, store the binary patch sets in the manufactur-
ers’ private cloud, and provide index for the user queries.

How to apply the binary patches for the fragmented An-
droid devices in the wild? Google’s security OTA updates are
only for their own Nexus devices, while the other manufacturers
catch up according to their capabilities. A flexible solution should
notify the users that differential binary patches are ready to apply,
and allow the users to query the states of their fragmented devices.
All the actions in the updating that the users need to do are button
click and waiting for rebooting. After rebooting, the vulnerabilities
should be eliminated from the devices.

3 DESIGN AND IMPLEMENTATION

To address the challenges and improve the Android security update
process, we propose and implement an automated security update
framework, namely LaChouTi. With LaChouTi, manufacturers can
respond to the unpatched kernel vulnerabilities by tracking and
identifying the vulnerabilities for fragmented Android devices.
Figure 1 shows the architecture of LaChouTi, which consists
manufacturer side and user side. At a high level, LaChouTi offers
private cloud service to Android users, mainly including four steps
D - @. The first three steps are on the manufacturer side. In step
D, LaChouTi tracks and identifies the exposed vulnerabilities for
the target Android kernels. Then, it generates differential binary
patches, tests the patched kernels in step @ and stores the patches

RIGHTS LI

LaChouTi: Kernel Vulnerability Responding Framework for the
Fragmented Android Devices

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

kemel CVE Bin Patches Kernel CVE cvss
. . d5edbde | CVE-2015-1421 | 10.0
3.4.0-gd59dbde | CVE-2015-3636 | 37cbb3es Storing Binary | @ gdssum: V20163636 | a5
* Patches
3.4.0-gd59dbde | CVE-2014-3153 | d80936c5
Pull
Generating ‘ @ Kemel CVE cvss
@ Differential Binary | g7zdiced | CVE-2015-3331 | 9.3
. g7z2diced | CVE-2015-4003 | 7.8
Patches Query
|| kernel repos Kernel GVE Patch
Identifyin Pul
ying 340 | CVE-2015-3636 | commit-a134i083 Kemel CVE cvss
M . Vulnerability @ g7cellcd | GVE-2015-5364 | 7.8
apping 340 |CVE-2014-3153 | commit-e9c243a5 aToetiod | CvE-20151806 | 72
CVE-Patch) Query
Manufacturers Private Cloud

Figure 1: Architecture of LaChouTi. LaChouTi consists the manufacturer service side and the end application side, and it offers
timely and flexibly kernel vulnerability patching updates for the fragmented Android devices by the private cloud service.

in the private cloud in step Q. Step @ is on the user side, where
users query or pull the patch update and apply it to kernel with
an Android application. By operating in the application, the kernel
can be patched and the vulnerabilities will be eliminated after the
devices rebooting. The key index that connects the cloud and the
end users is the CVE-Patch map between the kernel version and
the corresponding patches. LaChouTi repeats these @ - @ steps
automatically, and updates the devices as soon as the vulnerabilities
are publicly known.

3.1 Identifying Vulnerabilities

The first key step of LaChouTi is vulnerability identification, named
idPatch. idPatch is mainly designed (1) to track the exposed vulner-
abilities and build CVE-Patch map; (2) to identify the vulnerabilities
from the large and deeply customized source code bases; and (3) to
output the patches for the identified vulnerabilities [15].

Firstly, idPatch tracks the vulnerabilities published on CVE and
build CVE-Patch map according the kernel source code repository.
CVE-Patch map is a set of key-value pairs, whose key is CVE id
and the value is patch. Then, idPatch extracts information from
the patches, which includes the original/patched code segments
and the position identifiers. Thirdly, idPatch divides the source files
and patches into groups. Each group consists of a patch set and
the related source file. Fourthly, idPatch scans the vulnerabilities
by comparing the source code using a sliding window algorithm,
where the length of the window is decided by the normalized patch
file. Finally, after identification and refining, idPatch outputs the
patch sets for the target kernels.

3.2 Binary Patch Generation

With CVE-Patch maps, the patches are applied to the manufacturers’
kernel repositories. Then, the patched kernel is cross-compiled and
a new kernel is obtained. Finally, the differential binary patches are

922

generated by using bsdiff; which is a tool for building small patches
for executable files [17].

Manufacturers store the binary patches in private cloud which
is only accessible to specified clients. LaChouTi provides the differ-
ential binary patches as security updates, and the update service is
only accessible for the users with the right devices.

3.3 Patching Vulnerabilities

We develop an application, named KernelSafe, to get the push no-
tices or to actively pull the updates from the manufacturers’ private
cloud. If there is a new differential binary patch notice, KernelSafe
will query the CVE-Patch map, pull the corresponding patch into
the local device, and then apply the binary patch to the kernel
using bspatch. bspatch is a tool that used to applied binary patch to
another binary file.

KernelSafe requires the appropriate permission of the device,
which is easy to authorize from the manufacturers. It is recom-
mended that the manufacturer signs the KernelSafe application
with the system signature, and installs it as a built-in application.
Comparing with the monthly OTA security updates provided by
Google, LaChouTi provides binary patches almost as soon as the
vulnerabilities are published.

4 EVALUATION

We implement LaChouTi and evaluate it using 12 Android devices
as shown in Table 1. From Table 1, Vers indicates Android version,
Kernel means Linux kernel version, Vuln presents the number
of vulnerabilities and Manu indicates manufactory name. These
devices all belong to the Nexus series but with different Android ver-
sions, different kernel versions and different manufacturers. We also
evaluate four devices produced by four internationally renowned
manufacturers. However, according to the agreements signed with
them, we do not list them here.

RIGHTS

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Vulnerabilities identified from the devices.

Model Vers Kernel Vuln Manu
Nexus6P 6.0 3.10.73-gcf36678 42 Huawei
Nexus5X 6.0 3.10.73-g60cf314 42 LG

Nexus6 5.0 3.10.40-g72dfced 105 Motorola

Nexus5 6.0 3.4.0-g2aal65e 198 LG

Nexus5 5.0 3.4.0-g323bbd9 198 LG

Nexus5 4.4.4 3.4.0-gd59db4e 200 LG
Nexus10 4.4.2 3.4.39-g5b5c8df 156 Samsung
Nexus10 4.2.2 3.4.5-gaf9c307 200 Samsung

Nexus4 4.2.2 3.4.0-g7cellcd 205 LG

Nexus7 4.4.4 3.1.10-gle42d16 190 ASUS

Nexus7 43 3.1.10-gle8b3d8 192 ASUS

Nexus7 4.2.2 3.1.10-g05b777c 194 ASUS

We evaluate LaChouTi from the following perspectives: (1) We
implement the vulnerability identification module idPatch, and
create a CVE-Patch map with 782 vulnerability and patch items.
Then, we evaluate idPatch by identifying vulnerabilities from the
kernels of the 12 devices. (2) We implement the cloud service and
develop KernelSafe to get the push notices and to actively pull the
updates from the cloud. We evaluate the differential binary patches
generation and patching effects of LaChouTi using the devices.

4.1 Vulnerabilities Identification

CVE-Patch Map. idPatch uses a crawler to collect the detailed in-
formation of all the Linux kernel related vulnerabilities and creates
a CVE-Patch map including 1028 pairs of the kernel vulnerabilities
and their patches till to Dec., 2016. The time range of the CVEs
is from 2005 to 2016, which covers all the vulnerabilities for the
targeting device kernels v3.1.x-3.10.x (where “x" indicates the mi-
nor revision of the kernel). In addition, the patch source code is
provided along with the reported vulnerabilities and thus they are
also crawled by idPatch. With the code and CVE-Patch map, binary
patches can be generated for the target kernels using the technique
discussed in Section 3.

Vulnerabilities in the Employed 12 Devices. Table 1 shows
the identified vulnerabilities for each device using idPatch. Clearly,
all the devices in the table belong to the Google Nexus series, which
are released by Google as the flagship Android devices to demon-
strate Android’s latest software and hardware features.

From Table 1, we can see that except for the newly released
Nexus6P and Nexus5X with less than 100 vulnerabilities, most
of the devices have nearly 200 vulnerabilities. Although Google
releases security updates monthly, not all of the devices update
timely, and some devices even cannot access the update service. For
the devices produced by other manufacturers, the results may be
much worse.

Vulnerabilities in Fragmentation. Each participant of the An-
droid ecosystem may customize Android and the kernel for their
own purposes, which makes the Android world extremely frag-
mented. For the 12 devices in Table 1, fragmentation and vulnera-
bilities are easily observed.

We classify the fragmentation situation into four top-level cate-
gories by manufacturers and the series in Figure 2. (1) Category 1:

Ay

923

Jingzheng Wu, Mutian Yang

the devices are made by the same manufacturer and in the same se-
ries; (2) Category 2: the devices are made by the same manufacturer
while in different series; (3) Category 3: the devices are made by
different manufacturers while in the same series; and (4) category
4: the devices are made by different manufacturers and in different
series. We examine the vulnerabilities of each fragmentation, and
we have the following observations.

Same manufacturer with same series. According to Table 1, two
series belong to this category, which are Nexus5 and Nexus7 pro-
duced by LG and ASUS respectively. This category can be further
classified into four subcategories by the versions of Android and
kernel. Case 1: different Androids with same kernel. From Figure. 2(a),
three devices have almost the same number of vulnerabilities be-
cause the same kernel is affected mostly by the vulnerabilities. Case
2: same Android with different kernels. From Figure. 2(b), Nexus5X
has much less vulnerabilities than Nexus5 mainly because v3.10.73
(Nexus5X) is a relatively newer kernel than v3.4.0 and thus some
vulnerabilities have been patched. Case 3: different Androids with
different kernels. From Figure 2(c), Nexus 5 with 6.0 has much less
vulnerabilities than Nexus5 with 5.0 because v3.10.72 is a relatively
newer kernel than v3.4.0. Case 4: same Android with same kernel.
From Figure 2(d), two devices have almost the same number of
vulnerabilities because they have the same kernel.

Same manufacturer with different series. According to Table 1,
two series belong to this category, which are Nexus4 and Nexus5
produced by LG. Since only four devices locate in this category, this
category can only be further classified into two subcategories by
the versions of Android and kernel. Case 1: different Androids with
same kernel. From Figure 2(e), four devices have almost the same
number of vulnerabilities because they have the same kernel. Case 2:
different Androids with different kernels. From Figure 2(f), Nexus5X
has less vulnerabilities than Nexus 4 since the kernel version of
Nexus 5X (v3.10.73) is relatively newer kernel.

Different manufacturer with same series. According to Table 1,
Nexus 6 and Nexus 6P produced by Motorola and Huawei respec-
tively belong to this category. Since only two devices locate in this
category, this category is shown in Figure 2(g). From Figure 2(g),
Nexus 6P has much less vulnerabilities than Nexus 6. This is mainly
because v3.10.73 (Nexus 6P) is a relatively newer kernel.

Different manufacturer with different series. According to Table 1,
all the devices belong to this category. This category can be further
classified into four subcategories by the versions of Android and
kernel. Case 1: different Androids with same kernel. From Figure
2(h), three devices have almost the same number of vulnerabilities
since they have the same kernel. Case 2: same Android with different
kernels. From Figure 2(j), Nexus 10 has more vulnerabilities than
Nexus 7 while the kernel of Nexus 10 is released newer than Nexus
7. We manually audit the results, and found that some usual vulner-
abilities were not patched as the other manufacturers in Samsung
Nexus 10. This is mainly because the manufacturers might patch
the vulnerabilities in their own ways. Figure 2(j) is also described
in this case, Nexus 6 has less vulnerabilities than Nexus 5. Case 3:
different Androids with different kernels. From Figure 2(k), Nexus
5X has much lesser vulnerabilities. Case 4: same Android with same
kernels. From Figure 2(l), the two devices have almost the same
number of vulnerabilities.

LaChouTi: Kernel Vulnerability Responding Framework for the
Fragmented Android Devices

8

= Marshmallow 6.0/3.10.73-g60cf314

 Marshmallow 6.0/3.4.0-2g2aa165e

3

= Marshmallow 6.0/3.4.0-g2aa165¢
= Lollipop 5.0/3.4.0-g323bbd9

, 80 B
H
£70
860
2
§e0
240
530
£
S
10
o ||

2012 2013

KitKat 4.4.4/3.4.0-gd59dbde

i

2014 2015

Nesgg

Number of Vulnerabilities

2012 2013 2014 2015

(a) diff Android, same kernel (b) same Android, diff kernel

30 |‘
0 II[

2012 2013

= Marshmallows.0/3.4.0-g2aa 165

Lollipop5.0/3.4.0-g323bbd9

¥ KitKatd.4.4/3.4.0-gd59dbde
JellyBeand.2.2/3.4.0-g7cet1cd

i

2014 2015

 JellyBeand.2.2/3.4.0-g7celcd

2012 2013 2014 2015

(f) diff Android and kernel

Number of Vulnerabilities

(e) diff Android, same kernel

= JellyBeand 2.2/3.4 5-gaf9c307
= JellyBeand 2.2/3.1.10-g05b777c

0 - II ‘l II II

2011 2012 2013 2014 2015

2 g
2388

&

Nw s a9
8 g

Number of Vulnerabilties
Number of Vulnerabilties
38

2012 2013 2014 2015

°

(i) same Android, diff kernel (j) same Android, diff kernel

Number of Vulnerabilities

 Marshmallows.0/3.10.73-g60cf314.

Number of Vulnerabilities

= Lollipops.0/3.10.40-g72dfced
Lollipops.0/3.4.0-g323bbd9

Number of Vulnerabiliies.

= @
8

Ng & ag N

3

<

N w2 oo g

38

N s oo oo

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

= Marshmallow 6.0/3.10.73-g60cf314
= Lollipop 5.0/3.4.0-9323bbd9

= Jelly Bean 4.3/3.1.10-g1e8b3d8
= Jelly Bean 4.2.2/3.1.10-905b777¢

®
£

0 7
o £60
0 3
£s0
0 5
S 40
o 3
o 5%
£
0 S
10
° -— | o mm
2012 2013 2014 2015 2011 2012 2013 2014 2015
(c) diff Android, diff kernel (d) same Android and kernel
0 o Marshmallows 013 10.73-Ge136675 %0 = Marshmallow.0/3.4.0-g2aa165¢
= Lollipop5.0/3.10.40-g72dfced 80 ¥ Lollipop5.0/3.4.0-9323bbd9
0 70 # KitKatd.4.2/3.4.39-g5b5c8df
0 E 60
§
0 £
o 5 40
830
0 £
32
o 10
. —m W °
2013 2014 2015 2012 2013 2014 2015
(g) diff manufacturers serie (h) diff Android, same kernel
™ Marshmallow8.0/3.10.73-g60cf314 90 W Kitiatd.4.4/3.4.0-gd59dbde
= KitKatd.4.2/3.4.39-g5b580f
= SelyBane 3.1 Togteabads 80 = KitKat4.4.2/3.4.39-g5b5c8df
0 g
o0
0 5
o % 50
3
o S40
230
E
0 320 I I
o 10
o - - | o

2011 2012 2013 2014 2015 2012 2013 2014 2015

(k) diff Android and kernel (I) same Android and kernel

Figure 2: Detailed Analysis of the Fragmented Devices, which is classify into four top- level categories (1) Category 1 shown

in Figure 2(a) - 2(d), (2) Category 2
Figure 2(h) - 2(1).

Summary. From the above four top-level categories shown in
Figure 2(a) - 2(1), we can see that (1) the existence of fragmentation
is universal; (2) the security risk caused by fragmentation is seri-
ous; (3) idPatch is effective and practical in identifying the kernel
vulnerabilities from source code; and (4) kernel version and release
time are the key factors related to the vulnerabilities.

4.2 Vulnerabilities Patching

After identifying a vulnerability and its patch, LaChouTi applies
patches for the targeting kernel source code, generates differential
binary patches and offers those patches in private cloud. Then,
application KernelSafe is used to query and pull the updates from
manufacturer’s private cloud. Finally, the kernels in devices are
patched, and after patching the vulnerabilities are eliminated.

Take Nexus 5 as an example, it has 200 reported vulnerabilities
ranging from the year 2012 to 2016. As maintainers of the devices,
manufacturers should patch all of those vulnerabilities and espe-
cially patch the High severity ones immediately. Figure 3 shows
binary patching process for Nexus5. If there is an update patch
offered in manufacturer’s cloud, the detailed vulnerabilities queried
by KernelSafe are shown in Figure 3(a). Then, KernelSafe pulls the
binary patch, applies the patch to the kernel, and reboot the device
as shown in Figure 3(b) and Figure 3(c). After rebooting, the vulner-
abilities are eliminated. At this time, if the user query again, there
is no available patches as shown in Figure 3(d).

RIGHTSE LI MN iy

924

shown in Figure 2(e) - 2(f), (3) Category 3 shown in Figure 2(g), and (4) category 4 shown in

e

oEamaezz

ATRERLY , WBAdOUR EEE
%, DEEA?

TsarIsa/smaT un nx

eveamaan

I®000080

(a) Querying (b) Pulling (c) Applying (d) Querying

Figure 3: Vulnerabilities Patching for Nexus5

5 DISCUSSION

LaChouTi: Novelty versus Limitation. As shown in the ex-
periments (Section 4), LaChouTi is effective in responding to the
unpatched kernel vulnerabilities for the extremely fragmented An-
droid devices by using the identifying and patching processes. How-
ever, it is important to note that the biggest difficulty encountered
in LaChouTi is binary patching permission. Some devices do not
allow the applications to access to the boot section or authorization
is required. This is the limitation only to us, because manufacturers
who has the Android source code can authorize KernelSafe proper

RIGHTS LI

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

permissions. With those permissions, KernelSafe can patch to the
vulnerable kernel or even directly flash a new kernel.

Although, Google and some manufacturers update their devices
monthly or periodically, there are still attack windows. LaChouTi
is aiming to narrow the attack window and support timely update
without introducing additional works for the manufacturers. La-
ChouTi is flexible because either the whole or the identification
process idPatch can be adopted by the manufacturers to advance
their security update process.

LaChouTi: Present versus Extension. In this paper, we mainly
focus on kernel vulnerabilities. idPatch is also effective to identify
the known Android vulnerabilities. After identification, the man-
ufacturers can use LaChouTi or their original approach to update
the Android framework.

We just present the known vulnerabilities in evaluation, while
LaChouTi also supports the unpublished ones. The manufacturers
can write patches for the unpublished ones, generate binary patches
and offer them as usual. By this way, the capable manufacturers
can support more security updates.

In those evaluations, we found that the Android devices are ex-
tremely fragmented. The manufacturers, the series, the Android
and the kernel versions may combine randomly, making vulner-
abilities diversity. It is difficult for the third parties to provide a
unified solution. Therefore, an updates framework easy to take and
without additional efforts like LaChouTi is the best choice for the
manufacturers.

6 CONCLUSION

In this paper, we propose LaChouTi to respond to the security risk
induced by fragmentation in Android ecosystem. With LaChouTi,
the unpatched vulnerabilities can be identified and patched imme-
diately. We implement LaChouTi and evaluate 12 Nexus devices,
finding 1,922 unpatched kernel vulnerabilities, and collaborate with
four manufacturers on new commercial devices. The results show
that: (1) the security risk caused by fragmentation is extremely
serious; and (2) LaChouTi is effective in reducing such security risk.
Our work has meaningful implications to manufacturers in helping
them improve security update.

ACKNOWLEDGMENTS

We thank the great help and suggestions of Professor Shouling
ji, Tianyue Luo, Mei Liu, Chen Ni in this work. This work was
partly supported by the National Natural Science Foundation of
China No. 61303057, the project of Core Electronic Devices, High-
end Generic Chips and Basic Software No. 2012ZX01039-004, the
Provincial Key Research and Development Program of Zhejiang,
China under No. 2016C01G2010916, the Fundamental Research
Funds for the Central Universities, the Alibaba-Zhejiang University
Joint Research Institute for Frontier Technologies (A.Z.F.T.) under
Program No. XT622017000118, and the CCF-Tencent Open Research
Fund under No. AGR20160109.

REFERENCES

[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, Xiaofeng
Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. [n. d.]. Hare Hunting
in the Wild Android: A Study on the Threat of Hanging Attribute References. In
CCS’15. 1248-1259.

Ay

925

—_
)

—
&

—_
)

=
S

[11

[12

(13]

[14]

(15]

=
&

(17

[18

[19

[20]

[21

[22

(23]

[24

[25

[26

[27

Jingzheng Wu, Mutian Yang

Android. 2017. Welcome to the Android Open Source Project! (2017). http:
//source.android.com

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. [n. d.]. DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In NDSS’14.

Enrico Bacis, Simone Mutti, and Stefano Paraboschi. [n. d.]. AppPolicyModules:
Mandatory Access Control for Third-Party Apps. In ASIACCS’15. 309-320.
Andrea Bittau, Adam Belay, Ali José Mashtizadeh, David Maziéres, and Dan
Boneh. [n. d.]. Hacking Blind. In SP’14. 227-242.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. [n. d.]. Towards Taming Privilege-Escalation
Attacks on Android. In NDSS’12.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza
Sadeghi, and Bhargava Shastry. [n. d.]. Practical and lightweight domain isolation
on Android. In SPSM’11. 51-62.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. [n. d.]. Flexible and
Fine-grained Mandatory Access Control on Android for Diverse Security and
Privacy Policies. In SEC’13. 131-146.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. [n. d.].
A Study of Android Application Security. In SEC’11. 21-21.

Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu. [n. d.]. From System
Services Freezing to System Server Shutdown in Android: All You Need Is a Loop
in an App. In CCS’15. 1236-1247.

IDC. 2017. Smartphone Vendor Market Share, 2016 Q3. (2017). http://www.idc.
com/promo/smartphone-market-share/vendor

Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. [n. d.].
ret2dir: Rethinking Kernel Isolation. In SEC’14. 957-972.

Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. [n. d.].
kGuard: Lightweight Kernel Protection against Return-to-User Attacks. In SEC’12.
459-474.

Anil Kurmus and Robby Zippel. [n. d.]. A Tale of Two Kernels: Towards Ending
Kernel Hardening Wars with Split Kernel. In CCS’14. 1366-1377.

Tianyue Luo, Chen Ni, Qing Han, Mutian Yang, JingZheng Wu, and Yanjun Wu.
[n. d.]. POSTER: PatchGen: Towards Automated Patch Detection and Generation
for 1-Day Vulnerabilities. In CCS’15. 1656-1658.

OpenSignal. 2016. Android Fragmentation Visualized (August 2015). (2016).
http://opensignal.com/reports/2015/08/android-fragmentation/

Colin Percival. 2017. Naive differences of executable code. (2017). http://www.
daemonology.net/bsdiff/

Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. [n. d.]. Towards
Discovering and Understanding Task Hijacking in Android. In SEC’15. 945-959.
Stephen Smalley and Robert Craig. [n. d.]. Security Enhanced (SE) Android:
Bringing Flexible MAC to Android. In NDSS’13.

Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, Dave Andersen, and
Jay Lepreau. [n. d.]. The Flask Security Architecture: System Support for Diverse
Security Policies. In SEC’99.

Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. [n. d.]. Security
Metrics for the Android Ecosystem (SPSM ’15). 87-98.

Jingzheng Wu, Shen Liu, Shouling Ji, Mutian Yang, Tianyue Luo, Yanjun Wu,
and Yongji Wang. 2017. Exception Beyond Exception: Crashing Android System
by Trapping in "uncaughtException". In ICSE’17. 283-292.

Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang, and
Dawu Gu. [n. d.]. From Collision To Exploitation: Unleashing Use-After-Free
Vulnerabilities in Linux Kernel. In CCS’15. 414-425.

ZDNet. 2017. How to fix the latest Linux and Android
zero day flaw. (2017). http://www.zdnet.com/article/
how-to- fix-the-latest-linux-and-android-zero-day- flaw/

Hang Zhang, Dongdong She, and Zhiyun Qian. [n. d.]. Android Root and its
Providers: A Double-Edged Sword. In CCS’15. 1093-1104.

Yajin Zhou and Xuxian Jiang. [n. d.]. Dissecting Android Malware: Characteriza-
tion and Evolution. In SP’12. 95-109.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. [n. d.]. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and Alternative Android
Markets. In NDSS’12.

http://source.android.com
http://source.android.com
http://www.idc.com/promo/smartphone-market-share/vendor
http://www.idc.com/promo/smartphone-market-share/vendor
http://opensignal.com/reports/2015/08/android-fragmentation/
http://www.daemonology.net/bsdiff/
http://www.daemonology.net/bsdiff/
http://www.zdnet.com/article/how-to-fix-the-latest-linux-and-android-zero-day-flaw/
http://www.zdnet.com/article/how-to-fix-the-latest-linux-and-android-zero-day-flaw/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design and Implementation
	3.1 Identifying Vulnerabilities
	3.2 Binary Patch Generation
	3.3 Patching Vulnerabilities

	4 Evaluation
	4.1 Vulnerabilities Identification
	4.2 Vulnerabilities Patching

	5 Discussion
	6 Conclusion
	References

